
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

BlendSim: Simulation on Parametric Blendshapes
using Spacetime Projective Dynamics

Yuhan Wu and Nobuyuki Unemani

The University of Tokyo, Japan

Figure 1: From the five input meshes at keyframes (top), our method outputs animation with dynamic inertia effect (bottom). Simply
blending the input meshes at the keyframes using linear or spline interpolation leads to unnatural animation where the character looks stiff.
Our method generates more natural blendshape animation by optimizing the meshes at the keyframes and the timings of the keyframes. Our
spacetime optimization allows the user to selectively release the constraints to achieve the large secondary motion that deviate from the
keyframes (see the ears of the Cheburashka model).

Abstract

We propose BlendSim, a novel framework for editable simulation using spacetime optimization on the lightweight animation
representation. Traditional spacetime control methods suffer from a high computational complexity, which limits their use
in interactive animation. The proposed approach effectively reduces the dimensionality of the problem by representing the
motion trajectories of each vertex using continuous parametric Bézier splines with variable keyframe times. Because this mesh
animation representation is continuous and fully differentiable, it can be optimized such that it follows the laws of physics under
various constraints. The proposed method also integrates constraints, such as collisions and cyclic motion, making it suitable
for real-world applications where seamless looping and physical interactions are required. Leveraging projective dynamics,
we further enhance the computational efficiency by decoupling the optimization into local parallelizable and global quadratic
steps, enabling a fast and stable simulation. In addition, BlendSim is compatible with modern animation workflows and file
formats, such as the glTF, making it practical way for authoring and transferring mesh animation.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Keyframe animation provides a simple but effective method for
designing the movement of a character by interpolating poses in

sparse discrete keyframes. In contrast, physically based animation
typically assumes different representations, where the vertex po-
sitions of the meshes are stored for each frame, requiring a vast

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://orcid.org/0009-0009-5358-5579
https://orcid.org/0000-0003-1251-970X

2 of 12 Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics

amount of storage. Furthermore, once a frame-by-frame animation
is computed, manual editing of the outcome is impractical, as mod-
ifying a single frame introduces abrupt changes in the animation.
Since the simulation is computed and stored frame-by-frame, trans-
ferring data is also difficult due to large file sizes, thus integrating
such simulations with existing workflows proves challenging.

Several studies on character animation have explored the cre-
ation of plausible motions by combining simulation and keyframe-
based workflows. Spacetime constraints offer a solution by framing
this challenge as an optimization problem, allowing users to define
keyframes and physics to govern the in-between motions [WK88].
Given a set of keyframes and their corresponding timings, a physi-
cal model of the character can be established, and the trajectory that
most closely adheres to physical laws can be determined by solv-
ing a minimization problem in the time domain. Subsequent studies
have extended spacetime control to deformable objects [BdSP09;
HSvTP12; SvTSH14], optimizing the motion of elastic materials
between keyframes.

Despite their theoretical potential, spacetime control methods
have witnessed limited practical adoption in animation design ow-
ing to their high computational demands and memory require-
ments. Existing spacetime control methods often require discretiza-
tion of the time domain into small increments, which significantly
increases the dimensionality of the problem and, thus, the compu-
tational cost. Although previous studies have attempted to make
spacetime control more practical, these methods still struggle to
provide both editable and real-time solutions, particularly for com-
plex deformable objects. Several approaches require subspace re-
duction methods to improve performance; however, this process
sacrifices the spatial and temporal details of motion that often re-
semble trivial interpolations between input frames. Additionally,
existing techniques struggle with large-scale problems owing to
the high dimensionality of the data, that is, hundreds of frames,
each containing the entire position of every vertex. This results in
either slow convergence or a tendency for the optimizer to become
trapped in local minima, leaving much of the potential of spacetime
control untapped.

To address these limitations, we propose BlendSim, a novel
spacetime control method that significantly reduces the complex-
ity of the optimization process. We tailor the physics simulation to
adopt a deformation representation, where the smooth trajectory of
each vertex is specified by C1 continuous parametric splines, such
as Bézier splines, in the time domain. By optimizing only the con-
trol points of these splines (i.e., the blendshape meshes and their
timing), we substantially reduce the number of variables, making it
feasible to address spacetime control problems in real time.

Since the proposed approach adopts a spacetime optimization
framework, we can control animation by setting constraints. For
instance, the proposed method can take shapes at sparse keyframes
as inputs, then the method automatically generates natural contin-
uous animation. The proposed method can easily generate cyclic
animations, as recently demonstrated by Jia et al. [JWLC23]. In
the proposed framework, collisions can be also handled by treating
them as constraints applied to keyframe shapes.

We achieve efficient spacetime optimization using projective dy-
namics [BML*23]. In contrast to methods that rely on approxi-

Time

Figure 2: Comparison against naïve keyframe interpolation.
(Top) the naïve linear interpolation between keyframe meshes (out-
lined) yields incorrect volume loss. (Bottom) the proposed method
robustly computes physically natural dynamic deformation inter-
polating between these keyframes by adding four more keyframe
meshes as the control points of the spline interpolation, which are
optimized spatially and temporally.

mated linear elastic forces [BdSP09], projective dynamics decou-
ples energy computations into a local nonlinear projection onto
the constraint manifold, followed by a global linear projection
across all constraints. The proposed method extends the global
step to a quadratic minimization problem over a parametric tra-
jectory. Meanwhile, the local step resolves the nonlinear deforma-
tion of the sample points. This is crucial for our method because
a quadratic curve alone cannot capture highly nonlinear physical
motion. The initial optimization requires several seconds, but the
proposed method can reoptimize the animation in real time in re-
sponse to the edits.

Our contributions are summarized as follows:

• Spline-based spacetime optimization. We introduce a novel
spacetime control framework that reduces the complexity of an-
imation optimization by representing motion trajectories using
continuous parametric splines in the time domain. This approach
allows for real-time optimization by significantly reducing the
number of variables involved.

• Keyframe timing optimization. By treating timing as an op-
timizable parameter, we offer greater flexibility in generating
more dynamic and physically plausible animations.

• Handling various constraints. The proposed method incorpo-
rates constraints for static collisions, which were often over-
looked in traditional spacetime optimization owing to their com-
plexity. Constraints on shapes and velocity tangents can be in-
tegrated seamlessly, such as sparse keyframe input and cyclic
animation.

• Compatibility with typical animation workflow. The proposed
method is highly compatible with modern keyframe-based ani-
mation workflows. Thus, we facilitate easy integration into cur-
rent animation pipelines, making the proposed method practical
for industry applications and content creation.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics 3 of 12

(a) (b)

......

......

(c)

Figure 3: Editability of our blendshape representation against traditional frame-by-frame simulation results. (a) Typical physically-based
simulation is computed frame-by-frame, which requires significant storage space. Manually editing one of the frames after simulation would
violate animation continuity. (b) The proposed method uses much more compact spline interpolation based on blendshapes. Furthermore,
blendshapes and their spline weights are editable in most animation software while maintaining weight continuity. (c) Example of edited
blendshape (green) from the input constraints (red).

2. Related Works

2.1. Spacetime Constraints

The concept of spacetime constraints was introduced by Witkin et
al. [WK88], where animation was formulated as an optimal control
problem. Their groundbreaking work lays the foundation for future
animation control and optimization studies. Similar to our method,
Cohen [Coh92] developed an interactive spacetime editing system
by b-spline based trajectory. It was further applied to various physi-
cal systems, mostly human motion optimization [RGBC96; Gle97;
PW99; FP03; SHP04; SP05] and rigid bodies [PW99].

Subsequent studies extended spacetime optimization to de-
formable objects, albeit with varying approaches. For instance,
Kass et al. [KA08] proposed Wiggly Splines, which applied space-
time constraints without directly focusing on physical simulations.
They used a one-dimensional spring system controlled by complex
number coefficients, which artists had to adjust manually to achieve
the desired deformations. This method demonstrated the adaptation
of spacetime constraints to non-physical character animations, al-
though it relied heavily on user input.

The complexity of simulating elastic materials made spacetime
constraints challenging to implement in deformable body simula-
tions until Barbič et al. [BdSP09] introduced subspace simulations.
By applying model reduction techniques to keyframe-based data,

they made spacetime optimization more feasible for interactive ap-
plications. Hildebrandt et al. [HSvTP12] built on this approach by
combining linear model reduction around keyframes with Wiggly
Splines, enabling interactive response times for deformable simula-
tions. Li et al. [LHdG*14] expanded spacetime optimization to the
inverse design of physical materials, addressing the problem by op-
timizing the material parameters alongside motion trajectories. The
limited expressiveness of subspace models also restricts their range
of achievable designs. We address the limitation of these methods
in Fig. 4. Furthermore, they need to re-analyze the eigenmodes
of keyframes if a keyframe shape is changed. Comparatively, as
demonstrated in Fig. 5 our method can re-optimized the animation
responsively with user edits.

Despite these advances, the local-minimum problem remains a
significant challenge. Thomas and Joe [NM93] proposed a global
search algorithm for generating multiple novel trajectories that can
be executed in parallel. Schulz et al. [SvTSH14] addressed this is-
sue by introducing sparse controls, which yielded more vibrant dy-
namics in deformable object animations. Furthermore, Wampler et
al. [WP09] proposed a hybrid approach that combines spacetime
optimization with a derivative-free finding algorithm that specifi-
cally targets locomotion in legged animals.

Cyclical animation is another important aspect of animation cre-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 12 Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics

Linearized model
[Hildebrandt et al. 2012]

Full-space model
(ours)

Keyframe 0 Keyframe 1

Figure 4: Starfish Waving Arm. Previous spacetime optimization
methods often rely on linearized vibration analysis around each
keyframe, which require keyframes to remain relatively close; oth-
erwise, large differences can exceed the capacity of the linearized
model which cannot generate a reasonable result [HSvTP12].
Although rotation-strain coordinates [LHdG*14] offer improve-
ments, it is still reported to struggle with large rotations by later
research [BZC*23]. In contrast, our method can handles signifi-
cant rotational motions between keyframes.

ation. Gonzalez et al. [GAU10] applied periodic boundary condi-
tions to partial differential equations to create cyclic motion. Sim-
ilarly, Jia et al. [JWLC23] applied constraints only at the start
and end of a motion clip to generate seamless looping trajectories,
thereby rendering the cyclic animation highly efficient.

In addition, techniques such as static shape interpolation
have been explored for smooth in-between keyframe anima-
tions [HTZ*10; ACZW19; VSSH15]. Whereas these methods
achieve visually appealing interpolation, they lack dynamic effects
and focus purely on geometric transformations without physical re-
alism.

2.2. Complementary and Example-based Animation

Apart from spacetime optimization, a significant body of research
focuses on automatically enriching input animation by adding more
dynamic and detail. Barbič et al. [BdSP09] developed a keyframe
editing system for directable deformable objects. For thin-shell an-
imations, Tracks [BMWG07] extended the initial input by comple-
menting it with detailed surface simulations. Zhang et al. [ZBLJ20]
further extend this concept with complementary dynamics, a more
general framework for adding secondary motion to existing ani-
mations. Several studies accelerates complementary dynamics by
using position based dynamics [WU23] and using subspace simu-
lation [BZC*23].

Projective dynamics, initially introduced by Bouaziz et
al. [BML*23], has been proven effective in supporting example-
based animations. It was further extended to handle skeletal char-

acters by Li et al. [LLK19a; LLK20], providing a framework for
fast skeletal animation using projective dynamics. Differentiable
projective dynamics [DWM*21] further enhance this technique by
solving inverse problems in animations involving frictional con-
tact, making it possible to compute physically accurate animations
under various constraints. We extend the projective dynamics in a
new direction. We present a differentiable formula for spacetime
optimization. By representing motion trajectories continuously, we
develop a novel local-global solver for optimizing the animations.

2.3. Blendshape Animation

Blendshapes are widely used in animation, particularly in facial an-
imation. Lewis et al. [LHdG*14] provided a comprehensive survey
on blendshape facial models, explaining how expressive facial an-
imations are generated through the linear interpolation of blend-
shape basis shapes. More recently, Egger et al. [EST*20] presented
a survey on the evolution of blendshape models in facial anima-
tion, particularly focusing on how motion capture data has been
incorporated into 3D morphable face models. Deep learning ap-
proaches have also been explored. For example, Casas et al. [CO18]
demonstrate how neural networks can learn the soft-tissue physics
of blendshape models and reproduce dynamic blendshapes based
on input skinned meshes, offering a new avenue for blending data-
driven models with physics-based simulations.

The intersection of blendshapes and physics-based simulation
is most commonly seen in facial animation, with various meth-
ods combining the two to improve realism and physical accuracy.
Barrielle et al. [BSC16] introduced Blendforces, a framework that
constrains physics-based simulations using motion-captured facial
data. They convert facial animation into a set of force bases, al-
lowing them to combine blendshapes through physics-based tech-
niques. Ichim et al. [IKNP16] proposed a method that computes
a set of physics-compatible blendshapes from 3D facial scans,
combining the expressiveness of blendshapes with the accuracy
of physics-based simulations. Similarly, Kadlecek et al. [KK19]
developed a more accurate physics model based on facial mag-

Interactive editing

Real-time optimize

Figure 5: Full space interactive editing of ARMADILLO. With-
out spatial reduction, users can edit each keyframe shape in its
full space. The interpolated animation is re-optimized responsively
in real time, even for a character comprising up to 10k elements.
Please refer to our accompanying video for a demonstration of this
real-time interactive workflow.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics 5 of 12

netic resonance images, solving an inverse physics problem to build
precise facial simulations. While these works focus on facial an-
imations, they highlight the potential of combining blendshapes
with physics-based techniques. Our work extends the combination
of blendshapes and physics-based simulation to hyperelastic de-
formable objects.

3. Methods

Input and output Our inputs of our method include a shape rep-
resented as a mesh, a set of the mesh’s keyframe deformations, and
physics simulation parameters (e.g., stiffness, and gravity). Specif-
ically, the the user input N number of deformed shapes, which
have vertex positions X̄ = {x̄1, . . . , x̄N}, at corresponding keyframe
timing {t̄1, . . . , t̄N}. From the input key frames, our method opti-
mizes the keyframe animation based on the physical plausibility.
The output animation is N number of optimized keyframe tim-
ings {t1, . . . , tN} and corresponding meshes with optimized ver-
tex positions X = {x1, . . . ,xN} and the velocity of the vertices
V = {v1, . . . ,vN}.

The output keyframe deformation partially matches the input
keyframe deformation. The user can input which vertices in the
mesh in which keyframe output deformation follows the input de-
formation. Specifically, the user inputs a set of masks for each
keyframe M = {m1, . . . ,mN}. The mask of a vertex takes 1 if the
output vertex position matches with that of the input and takes 0
if the output vertex position moves freely during the optimization
(i.e., mi ⊙xi = mi ⊙ x̄i where ⊙ stands for the element-wise prod-
uct). Additionally, the user can input the constraint on the keyframe
timing, e.g., for which keyframe the output timing need to be equal
to the input timing. Furthermore, the user can specify various con-
straints on the output animation, such as looping constraints and
discrete velocity constraints, which we will discuss in detail in Sec-
tion 3.5.

3.1. Spline Representation of Mesh Animation

We animate the mesh using the sequence of cubic Bézier splines.
We interpolate vertex positions and their velocities at two consec-
utive keyframes. As illustrated in Figure 6, at the time t ∈ [ti, ti+1],
the positions of the mesh is computed

x(t) = b0(θ)xi +b1(θ)(xi +Tivi)

+b2(θ)(xi+1 −Tivi+1)+b3(θ)xi+1, (1)

where b0,b1,b2,b3 are the cubic Bernstein polynomials, θ = (t −
ti)/(ti+1 − ti) is their parameter, and Ti = ti+1 − ti is the interval be-
tween the keyframes. Note that this construction ensures that the
velocity of vertices exactly becomes vi at the keyframe time ti.
Thus, our formulation of the sequence of Bézier splines has C1-
continuity ensuring smooth transitions across keyframes. Detailed
derivations are provided in Appendix A. Our formulation in (1) can
be considered blendshapes, and the output can be directly exported
to an animation format supporting blendshape.

We express the relationship between position and control param-
eters in a more concise matrix representation

x(t) = Bi(θ)qi, (2)

time

Figure 6: Parameterization of mesh animation using the vertex po-
sitions x and their velocity v at the keyframe timings. We use cubic
Bézier spline interpolation to ensure the C1 continuity.

where Bi = [b0+b1,b1Ti,b2+b3,−b2Ti] is the blendshape weights
and qi = [xi,vi,xi+1,vi+1]

T are the positions and velocities at both
ends of the i-th interval. The first and second time differentiation of
vertex positions x(t) becomes ẋ = (1/Ti)B′

iqi and ẍ = (1/T 2
i)B

′′
i qi

respectively, where B′
i and B′′

i is the first and the second derivative
of Bi with respect to θ.

Compatibility with existing animation tools Our representation
of the mesh animation can be considered a blendshape animation
(see Fig. 3). As a result, any file formats or software that support
blendshapes are compatible with our method, and our method can
be easily embedded into other animation design frameworks. One
of the advantages of blendshape animation is edit-ability. Even if
our optimization is not running in real-time, the artists can still
manually edit the blendshapes and their spline weights without de-
stroying the continuity of the animation. Another advantage is the
compact file size. Because we only keep the vertex deformation in-
formation at sparse keyframes (rather than at all the frames with
small time steps), the file size is compact, thus suitable for transfer-
ring the animation on the Internet.

3.2. Spacetime Optimization

Let us consider the equation of motion of elastic deformation

Mẍ+Dẋ = f in(x)+ f ext, (3)

where the M is the mass matrix, D is the damping matrix, f in is
the internal force (i.e., gradient of the elastic potential energy mul-
tiplied by −1), and f ext is the constant external force (e.g., gravity).

The spacetime optimization (e.g., [BSG12]) often minimizes the
L2 norm of the residual force integrated in the time domain

W =
N−1

∑
i=1

∫ ti+1

ti

1
2
||f res(t)||2M−1 dt, (4)

where the f res = Mẍ + Dẋ − f in(x)− f ext is the residual force,
which is the unbalanced force and thus a measure for physical im-
plausibility.

Unfortunately, the time integration in (4) cannot be analytically
evaluated. Hence, we numerically compute it by sampling K num-
ber of θ uniformly inside [0,1] for all the intervals between the

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 12 Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics

keyframes

W ≃
N−1

∑
i=1

Ti

2K

K

∑
k=1

||f res
ik ||2M−1 , (5)

where f res
ik is the residual force in the i-th interval’s k-th sampling

point f res
ik = f res(ti +Tiθk).

The Jacobian of residual force with respect to q j is given by

∂f res
ik

∂qi
=

1
T 2

i
MB′′

ik +
1
Ti

DB′
ik −

∂f in

∂x
Bik. (6)

Using the gradient of the f res
ik , we can optimize the vertex positions

at all the keyframes X and their velocities V . For example, since (5)
is quadratic, we would use the Levenberg–Marquardt method that
iteratively minimizes the objective function. However, this is very
costly due to the nonlinear nature of internal force f in with respect
to the vertex positions x. The ∂f in/∂x in (6) changes its value every
iteration, so as the coefficient matrix.

3.3. Spacetime Projective Dynamics

We efficiently minimize the time-integrated norm of residual forces
in (5) using the projective dynamics [BML*23] formulation, which
introduces the rotation for each mesh element as auxiliary variables
and interleaves the local and global optimization steps. The global
step solves the deformation through quadratic optimization with a
constant coefficient matrix, whereas the local step efficiently op-
timizes the rotations in a fully parallel way. While the original
projective dynamics solves the deformation of a single time step
on-by-one, our spacetime projective dynamics simultaneously opti-
mize the entire animation. Our spacetime projective dynamics still
benefit from the quadratic optimization with a constant coefficient
matrix in the global steps and the parallel nature of the local steps.

As shown in [LLK19b], the internal forces in the projective dy-
namics can be written using the two constant matrices L and J as

f in(x) =−Lx(t)+Jp(t), (7)

where p(t) is a set of projected matrices for all the elements in
the mesh obtained by projecting deformation gradients onto a con-
strained manifold in the local step. Using the formulation in (7),
we can write the force residual at the k-th sampling point in the i-th
interval as

f res
ik = Gikqi −Jpik − f ext, (8)

Gik =
1

T 2
i

MB′′
ik +

1
Ti

KB′
ik +LBik, (9)

where pik is the set of rotations at the k-th sampling point in the
i-th interval. Note that the Jacobian of residual force Gik now be-
comes constant, which is in constant to the non-constant Jacobian
in (6). Our formulation enjoys significant acceleration by storing
the Jacobian Gik for reuse.

The spacetime optimization now becomes minimization of

W ≃
N−1

∑
i=1

Ti

2K

K

∑
k=1

∣∣∣∣∣∣∣∣Gikqi −Jpik − f ext
∣∣∣∣∣∣∣∣2

M−1
. (10)

In the global step, we optimizes the positions and velocities of all

Figure 7: Gravity and collision handling. In this SPOT experiment,
Starting from blue input keyframes and an initial guess of collision
position, our method iteratively optimizes the in-between anima-
tion. The falling trajectory is parabolic due to the effect of gravity.
Our optimization refines the time and deformation when the object
collides with the floor.

the keyframes {Q,V} while fixing the rotations at all the sampling
time pik. This results in solving quadratic optimization where its
coefficient matrix is constant – we achieve significant acceleration
by computing its Cholesky decomposition and store the decompo-
sition for reuse. In the local step, we optimizes the rotations at all
the sampling time pik independently while fixing the positions and
velocities of all the vertex at all the keyframes. This is also com-
puted efficiently by taking advantage of the parallel computation –
all the rotations pik in each element in each time step can be com-
puted in parallel.

Optimization detail We use the input vertex positions of the
keyframes as initialization of the optimization X = X̂ , whereas the
velocity is initialized as zero. The user’s constraint on the vertex
position at the keyframes is satisfied by setting the hard constraint
in the optimization, i.e., we separate free and fixed vertex posi-
tions and only solve the optimization only for the positions of free
vertices. In the global step, we regulate the update (i.e., damp the
update to prevent jumping far from the input in one step) by adding
scaled identity matrix to the coefficient matrix of quadratic system
solver. This reguralization ensures the stability of the Cholesky de-
composition and steady convergence of the local-global solver. Our
experiments suggest the reguralization actually accelerate the con-
vergence of the spacetime optimization (see Section 4). Note that
in the original projective dynamics, the mass matrix plays the role
of such regularization in the quadratic solver.

3.4. Keyframe Timing Optimization

In contrast to the frame-by-frame simulation, our spline-based in-
terpolation between keyframes allows the continuous optimization
of the keyframe timing because the keyframe is not a discrete step
but rather a continuous variable. In our Bézier spline formulation,
changing interval Ti does not affect the sampled residual forces in
intervals other than Ti. Taking advantage of this locality, we can op-
timize Ti just by minimizing the time integral of the residual force

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics 7 of 12

...

Figure 8: Walking dinosaur animation. In the top row, we show the keyframe mesh input from [BdSP09] for this DINO example. The
tetrahedral mesh for embedding the fine mesh is shown on the leftmost. Only the tail part of this dinosaur model (marked in red) can
move freely during the optimization; other parts are fixed to the input keyframes. The bottom row shows deformation interpolated from our
parametric blendshape animation where the tail has natural vibration. Please refer to our supplemental video for the animation.

between two keyframes t ∈ [ti, t j]. The time integral becomes

Wi =
∫ ti+1

ti

1
2
||f res(t)||2M−1 dt ≃ Ti

2K

K

∑
k=1

||f res
ik ||2M−1 . (11)

The first-order derivative becomes

∂Wi

∂Ti
=

1
2K

K

∑
k=1

{
||f res

ik ||2M−1 +2Ti
∂f res

ik
∂Ti

M−1f res
ik

}
. (12)

Computing the second-order derivative is straightforward – we can
derive the exact formula including the second-order derivative of
residual force with respect to the interval ∂

2Fres/∂T 2
i . Details on

these derivatives are in Appendix A.

Note that, the change of time interval Ti, affects the sampled
Jacobian in the i-th interval Gik in (9). In the actual optimization
process, we use alternating optimization strategy. First, we iterates
several steps for optimizing poses and velocities {X ,V}, then we
optimize the timing of keyframes and redo any precomputation that
is affected by the updates. Finally, we go back to the step of trajec-
tory optimization. The keyframe timing optimization does signifi-
cantly change the overall animation as it is parameterized continu-
ously with the Bézier spline. One keyframe timing optimization is
typically enough for the convergence.

3.5. Various Constraints

Same time & positions

Collision handling Our cubic Bézier pa-
rameterization smoothly interpolates ver-
tex positions and their velocities of a mesh
at keyframes (see Figure 7). Our interpo-
lation is C1 continuous, i.e., the velocity
changes continuously. Meanwhile, the collision often introduces a
discontinuous change in the velocities, which is difficult to han-
dle as it uses our interpolation scheme. As the inset figure illus-
trates, we use two adjacent keyframes that share the same timing

and the same vertex positions to handle the velocity’s discontinu-
ity. These constraints (i.e., zero interval and same vertex positions)
are specified by the user and applied to the optimizations as hard
constraints. The user roughly inputs the keyframe timing at a col-
lision event, and our keyframe timing optimization automatically
adjusts the keyframe timing to the time the collision occurs.

Since our method differs from step-by-step simulation, we can-
not use penalty-based or position-based collision handling tech-
niques which requires small time steps [MHHR07] . Thus, we in-
corporate KKT conditions into our optimization framework to en-
sure a physically plausible shape at the colliding keyframe. During
each iteration, we identify colliding vertices and update the active
constraints accordingly. We also adaptively increase the number of
sampled frames around the collision event to capture more accurate
deformation. In the BALL example (Fig. 12), we set the material to
be soft for more pronounced collision effects and sample 20 inter-
mediate points between adjacent keyframes to achieve a plausible
colliding animation.

Cyclic animation The ability to seamlessly loop animation is es-
sential for achieving natural-looking motion that can be repeated
without visible discontinuities. Last year, Jia et al. [JWLC23] ex-
plored methods to achieve these seamless loops by spacetime op-
timization. However, their method comes at the cost of signifi-
cant computation time, as the entire trajectory, which is computed
frame-by-frame, needs to be optimized to ensure smooth transi-
tions at the boundaries of the loop. In contrast, our method allows
for a much more efficient solution by introducing the blendshape
representation. We put a simple constraint that the first and the
last keyframes share the same positions and velocities for all the
vertices These constraints ensure continuity in both position and
velocity, creating a seamless loop with significantly reduced com-
putation cost. Furthermore, our ability to optimize the keyframe

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 12 Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics

Input Output

Figure 9: We optimize the animation of regular shapes in 3D
(top,TWIST) and 2D (bottom,STRETCH) with cyclic constraints.
The left column shows one of the in-between frames in the input
animation, which is the geometric interpolation of keyframes. The
right columns shows our result by fixing the top and bottom vertices
and letting our method automatically complement the animation
of other vertices. (Top) the volume shrinking in input animation
is refined in the output. (Bottom) the shape of the stretched input
keyframe is also optimized due to volume preservation.

timing is crucial in representing vibration (e.g., a pendulum), as the
animation duration automatically adjusts to the vibration period.

4. Results

We demonstrate that our algorithm produces natural physical an-
imations across various scenarios. Our implementation is written
in C++ and tested on an Intel(R) Core(TM) i7-14700KF CPU with
32GB of memory. All physics models use projective dynamics with
strain and volume constraints [BML*23]. We utilize the Eigen3 li-
brary for all linear solvers, and OpenMP for parallel computing.
Upon acceptance, we will publish our code on GitHub.

Experimental setup This section presents simulations of several
example scenes to evaluate our method. These scenes demon-
strate various situations, such as viewing input keyframes, trajec-
tory optimization, interactive re-optimization after keyframe edits,
keyframe timing optimization, and data exportation. Table 1 sum-
marizes scene statistics and performance metrics. The convergence
criterion is met when the change in the spacetime integral W is less
than 1% of its initial value. We set the damping matrix as D= 0.1M
(i.e., Rayleigh damping) for all tests. We note that the simulation

Figure 10: Timing optimization. The top row shows the original
keyframes for CHEB, where all keyframes are distributed with equal
time intervals. In the bottom row, we optimize the keyframe timing
while constraining the total duration of the animation to remain the
same. As shown in the bottom row, our method automatically ad-
justs the timing of the jumping keyframes, extending their intervals
to create a more natural-looking jump (i.e., higher jump results in
longer airborne time).

results were not very sensitive to the damping force. For the in-
put mesh animations (DINO and ARMADILLO), we first generate
a decimated mesh and use TetGen [Han15] to create a tetrahedral
simulation body. We then reconstruct the full mesh animation from
the tetrahedra-based motion via barycentric coordinates.

Cyclic twisting and stretching Our first experiment focuses on
a simple twisting and stretching volume, as illustrated in Fig. 9.
This TWIST example demonstrates the robustness of our method
in generating physically plausible animation while correcting non-
physical aspects of the keyframe shapes. The initial and final
keyframes share the same positions and velocities to achieve a pre-
cisely periodic animation. Interestingly, the optimization converges
faster as the cyclic animation reduces the number of variables.

Animation duration

Spacetime loss

Timing Optimization
Initial duration
Optimized duration

Figure 11: Convergence of the timing optimization. For the cyclic
animation in Fig. 9, the blue line shows the time integration of
squared residual force after keyframe position and velocity opti-
mization for different animation duration. Starting from two dif-
ferent initial timing setups (red points), we optimize the keyframe
positions and velocities first and then optimize the total time dura-
tion. They both converge to a similar minimum (green points).

Walking dinosaur We further compare our method with previ-
ous work on the walking dinosaur model [BdSP09]. We reduce
the complexity of simulation by embedding the deformation in the

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics 9 of 12

Solver w/o regularization w/ regularization

Name Verts Tets Keys
Sample
points

Precompute
time (s)

Iter
time (s)

Iter
nums

Iter
time (s)

Iter
nums

Timing
optimziation (s)

STRETCH 594 2400 3 14 0.18 0.012 4 0.009 4 0.023
TWIST 594 2400 5 40 0.699 0.042 10 0.035 9 0.016
DINO 439 1192 10 90 0.91 0.045 1 0.030 3 0.023
CHEB 922 3125 10 90 3.771 0.92 1 0.080 5 0.205
ARMADILLO 2598 10024 5 40 3.073 0.121 4 0.100 5 0.246
BALL 316 1070 3 40 0.412 - - 0.112 10 0.009
SPOT 823 2288 3 24 1.043 - - 0.263 9 0.012

Table 1: Model statistics and performance. Verts refers to the number of vertices. Tets refers to the number of tetrahedral elements, and
Keys refers to the number of keyframes. We test performance with or without the regularization term, as discussed in Section 3.3. We report
the CPU time for one optimization iteration for both trajectory and timing. Here, “-" means failure of the convergence.

coarse resolution mesh. We first employ the nested-cage method
[SVJ15] to refine the mesh to a specific resolution, then generate
tetrahedral mesh for simulation. Similar to their approach, our tetra-
hedral model includes approximately 1,000 vertices. The barycen-
tric coordinates of original mesh vertices are computed for em-
bedding deformation, such that we output can animate the origi-
nal mesh. As demonstrated in performance Table 1, Although there
are 10 keyframes, and we aim at optimizing the position and tan-
gents on these keyframes all at once, all the precomputation and
iteration can be computed efficiently. Since the input animation
already contains dense keyframes, a single iteration of the local-
global solver yields satisfactory results. To showcase the advan-
tages of our method, we release the constraint on the dinosaur’s
tail, as shown in Fig. 8. Manually animating the swinging tail of
the dinosaur that naturally goes with other body part would chal-
lenging for the novice artist. Meanwhile, our method adds vibrant
secondary motion effects to the tail automatically. When the user
edits any part of the keyframe, it takes only another iteration to re-
optimize the entire animation, ensuring smooth integration of user
modifications.

Jumping Cheburashka. We apply our method to a more complex
model, CHEBURASHKA, as in our teaser (Figure 1). The animation
is retargeted from human motion using Pinocchio [BP07], so the
initial keyframe has rigid ears. Thus, we release the constraints on
the ears in each keyframe to deform the ears. The resulting ani-
mation smooths the deformable dynamics between keyframes and
adds secondary motion to the ears, creating a richer and more dy-
namic effect.

Keyframe timing optimization. As shown in Fig. 10, when users
introduce extreme deformations into a keyframe, the time inter-
vals before and after this keyframe are automatically adjusted to
be longer, ensuring that the transition is smoother and eliminating
abrupt deformations. To test the stability of timing optimization in
Section 3.4, we set up an experiment shown in Fig. 11. We first
record the spacetime energy W in (4) for various animation dura-
tion. The spacetime energy W is minimized when the cyclic motion
fits the period of elastic vibration, thus minimizing the amount of
residual forces. Then, starting from different initial guess animation
durations, we tested how quickly it reached the minimum spacetime

(a) (b)

(c) (d)

Figure 12: Real-time optimization while changing input keyframe
deformation. (a) The input keyframes of BALL specify initial, col-
liding, and final positions. (b) Without a discontinuity, our inter-
polation produces a smooth but nonphysical result. (c, d) By intro-
ducing a discontinuous path for collision, users can interactively
edit the initial and final positions while viewing the optimized in-
between animation in real time. Our optimization adjusts the defor-
mation in the colliding keyframe and the velocities and timings of
all the keyframes.

energy W . We found that one single Newton’s method results in the
duration of animation that is close to the minimum of W .

Collision In Fig. 12, we demonstrate a bouncing ball animation
optimized as two trajectories before and after the collision. Users
can interactively replace the starting and ending keyframes, and our
method efficiently re-optimizes the bouncing motion. For collision
handling, we need to track vertices that violate contact conditions
and set up constraints for them in each iteration. For the exam-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 12 Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics

ples that involve collision, Regularization is necessary to control
the magnitude of updates. Fortunately, visually appealing anima-
tions can be achieved after only 2-4 iterations. Further iterations
reduce the spacetime energy but do not result in noticeable visual
improvements. Fig. 7 showcases a more complex model with con-
tact. Even with a moderate-sized tetrahedral model up to 10k ele-
ments, our method optimizes the trajectory while refining the col-
lision keyframes.

Regularization In each global step in our spacetime projective dy-
namics, we often regularize the update by damping the solution
of a quadratic linear system. It depends on the examples whether
this regularization is effective or not. As shown in Table 1, the
DINO and CHEB examples converge faster without regularization,
while the other models converge faster with regularization. We ob-
serve that reguralization is effective if the input keyframes anima-
tion is far from the physically plausible deformation. For exam-
ple, in TWIST animation in Figure 9, the deformations between
the keyframes before the optimization are physically implausible
as they have severe volume loss. In such a case, relaxation using
regularization accelerates the convergence, as shown in Fig. 13.

File exportation Our animation representation is supported by an
existing animation file format that supports blendshape animation.
We use the OpenUSD library to export our animations as weighted
blendshape sequences, which can be imported directly into popular
tools such as Blender and Maya. We also use Blender to convert
the file format to glTF. Our output can be viewed using a typical
glTF viewer. The supplemental material includes several examples
of glTF and USD files. Our representation is lightweight and suit-
able for transferring files online. As shown in Table 2, compared
to the animation format that records simulation results frame-by-
frame, we significantly reduce the file size and computational load,
making it easier to transfer and edit animations without sacrificing
much quality.

5. Limitation and Future Work

Although we optimize up to 10 keyframes at once to show the capa-
bility of our method, it is not necessary in practical usage. A direct

w/ regularization
w/o regularization

CPU time (s) CPU time (s)

STRETCH TWIST

Figure 13: We test our method with and without the regularization
to the quadratic system solve (i.e., identity matrix added to the co-
efficient matrix to damp the updates). We record the convergence
of the spacetime integral with respect to CPU time. The left figure
is the cyclic STRETCH animation, and the right figure is the cyclic
TWIST animation, as introduced in Fig. 9.

performance improvement would be to leverage spacetime window
[Coh92], which only selects several keyframes at a time to opti-
mize in each step. Another improvement is to mix our method with
spatial subspace method [BdSP09]. However, in our experiment,
simply use the rigging weights from linear blend skinning leads to
unstable optimization results. Tests on more detailed spatial sub-
space constructions are necessary.

Our method begins as a keyframe interpolation approach and
evolves into a system that generates additional blendshapes, ulti-
mately converting the input into weighted blendshape animations.
Given that blendshape animation is widely used in modern anima-
tion workflows, a promising extension of our method would be to
support blendshape animations as input. This could involve com-
plementing the blendshape space with optimized new shapes.

In this paper, we have only focused on solid deformable objects.
However, theoretically, our method could be extended to any ma-
terial that supports local-global solvers. For instance, blendshape
animation is also common in cloth animation. Given that projec-
tive dynamics has been extended to cloth simulation, it is feasible
to extend our approach to generate cloth-specific blendshapes, en-
hancing the its control-ability and portability.

6. Conclusion

We present BlendSim, a novel framework that transitions the foun-
dation of physics-based simulations from discrete frame-by-frame
methods to continuous interpolation trajectories using blendshapes.
Our approach establishes a parametric connection between blend-
shapes and physical realism, enabling editable and transferable
simulations. By compressing the simulation in the time domain
through predefined cubic spline interpolation, we maintain high
spatial detail while significantly reducing computational complex-
ity.

BlendSim can be seamlessly into modern animation workflows
based on keyframes and its compact blendshape representation is
fully compatible with industry-standard formats such as USD and

File size
(.usdc, MB)

Animation time
(s)

Name
Full-frame
(60 FPS)

BlendSim

STRETCH 32.8 2.4 1.58
TWIST 41.5 4.5 2.0
DINO 64.3 9.7 3.15
CHEB 72.9 12.6 2.7
BALL 5.7 1.1 0.6
SPOT 20.1 2.3 1.0
ARMADILLO 45.6 8.4 2.4

Table 2: We export our outputs in USD file format for both 60
FPS frame-by-frame animation and to our blendshape animation.
The file size of frame-by-frame animation can be significantly large
when the frames of animation increase. Meanwhile, our method
only needs to store blendshapes and weight animation curves; our
file size only depends on the number of keyframes.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics 11 of 12

glTF. Through the use of projective dynamics, we achieve a balance
between computational efficiency and accurate physics-based mo-
tion. Our framework supports a wide range of constraints, includ-
ing collisions, cyclic motions, and dynamic keyframe adjustments,
making it applicable to both traditional character animation and
more complex deformable object simulations. Through this work,
we aim to bridge the gap between high-fidelity physics simulations
and interactive animation design, offering a new level of control
and efficiency to animators and simulation artists.

References
[ACZW19] AHARON, IDO, CHEN, RENJIE, ZORIN, DENIS, and WE-

BER, OFIR. “Bounded distortion tetrahedral metric interpolation”. ACM
Transactions on Graphics (TOG) 38.6 (2019), 1–17 4.

[BdSP09] BARBIČ, JERNEJ, da SILVA, MARCO, and POPOVIĆ, JOVAN.
“Deformable object animation using reduced optimal control”. ACM
SIGGRAPH 2009 papers. 2009, 1–9 2–4, 7, 8, 10.

[BML*23] BOUAZIZ, SOFIEN, MARTIN, SEBASTIAN, LIU, TIANTIAN,
et al. “Projective dynamics: Fusing constraint projections for fast sim-
ulation”. Seminal Graphics Papers: Pushing the Boundaries, Volume 2.
2023, 787–797 2, 4, 6, 8.

[BMWG07] BERGOU, MIKLÓS, MATHUR, SAURABH, WARDETZKY,
MAX, and GRINSPUN, EITAN. “Tracks: toward directable thin shells”.
ACM Transactions on Graphics (TOG) 26.3 (2007), 50–es 4.

[BP07] BARAN, ILYA and POPOVIĆ, JOVAN. “Automatic rigging and an-
imation of 3D characters”. ACM Trans. Graph. 26.3 (July 2007), 72–
es. ISSN: 0730-0301. DOI: 10.1145/1276377.1276467. URL:
https://doi.org/10.1145/1276377.1276467 9.

[BSC16] BARRIELLE, VINCENT, STOIBER, NICOLAS, and CAGNIART,
CÉDRIC. “Blendforces: A dynamic framework for facial animation”.
Computer Graphics Forum. Vol. 35. 2. Wiley Online Library. 2016, 341–
352 4.

[BSG12] BARBIČ, JERNEJ, SIN, FUNSHING, and GRINSPUN, EITAN.
“Interactive editing of deformable simulations”. ACM Transactions on
Graphics (TOG) 31.4 (2012), 1–8 5.

[BZC*23] BENCHEKROUN, OTMAN, ZHANG, JIAYI ERIS, CHAUDHURI,
SIDDHARTHA, et al. “Fast Complementary Dynamics via Skinning
Eigenmodes”. arXiv preprint arXiv:2303.11886 (2023) 4.

[CO18] CASAS, DAN and OTADUY, MIGUEL A. “Learning nonlinear
soft-tissue dynamics for interactive avatars”. Proceedings of the ACM
on Computer Graphics and Interactive Techniques 1.1 (2018), 1–15 4.

[Coh92] COHEN, MICHAEL F. “Interactive spacetime control for anima-
tion”. Proceedings of the 19th annual conference on Computer graphics
and interactive techniques. 1992, 293–302 3, 10.

[DWM*21] DU, TAO, WU, KUI, MA, PINGCHUAN, et al. “Diffpd: Differ-
entiable projective dynamics”. ACM Transactions on Graphics (TOG)
41.2 (2021), 1–21 4.

[EST*20] EGGER, BERNHARD, SMITH, WILLIAM AP, TEWARI, AYUSH,
et al. “3d morphable face models—past, present, and future”. ACM
Transactions on Graphics (ToG) 39.5 (2020), 1–38 4.

[FP03] FANG, ANTHONY C and POLLARD, NANCY S. “Efficient synthe-
sis of physically valid human motion”. Acm transactions on graphics
(tog) 22.3 (2003), 417–426 3.

[GAU10] GONZALEZ CASTRO, GABRIELA, ATHANASOPOULOS,
MICHAEL, and UGAIL, HASSAN. “Cyclic animation using partial
differential equations”. The Visual Computer 26 (2010), 325–338 4.

[Gle97] GLEICHER, MICHAEL. “Motion editing with spacetime con-
straints”. Proceedings of the 1997 symposium on Interactive 3D graph-
ics. 1997, 139–ff 3.

[Han15] HANG, SI. “TetGen, a Delaunay-based quality tetrahedral mesh
generator”. ACM Trans. Math. Softw 41.2 (2015), 11 8.

[HSvTP12] HILDEBRANDT, KLAUS, SCHULZ, CHRISTIAN, von TYCOW-
ICZ, CHRISTOPH, and POLTHIER, KONRAD. “Interactive spacetime con-
trol of deformable objects”. ACM transactions on graphics (TOG) 31.4
(2012), 1–8 2–4.

[HTZ*10] HUANG, JIN, TONG, YIYING, ZHOU, KUN, et al. “Interactive
shape interpolation through controllable dynamic deformation”. IEEE
Transactions on Visualization and Computer Graphics 17.7 (2010), 983–
992 4.

[IKNP16] ICHIM, ALEXANDRU EUGEN, KAVAN, LADISLAV, NIMIER-
DAVID, MERLIN ELÉAZAR, and PAULY, MARK. “Building and animat-
ing user-specific volumetric face rigs”. SCA’16: Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. The Eu-
rographics Association. 2016 4.

[JWLC23] JIA, SHIYANG, WANG, STEPHANIE, LI, TZU-MAO, and
CHERN, ALBERT. “Physical Cyclic Animations”. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 6.3 (2023), 1–
18 2, 4, 7.

[KA08] KASS, MICHAEL and ANDERSON, JOHN. “Animating oscillatory
motion with overlap: wiggly splines”. ACM SIGGRAPH 2008 papers.
2008, 1–8 3.

[KK19] KADLEČEK, PETR and KAVAN, LADISLAV. “Building accurate
physics-based face models from data”. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques 2.2 (2019), 1–16 4.

[LHdG*14] LI, SIWANG, HUANG, JIN, de GOES, FERNANDO, et al.
“Space-time editing of elastic motion through material optimization and
reduction”. ACM Transactions on Graphics (TOG) 33.4 (2014), 1–10 3,
4.

[LLK19a] LI, JING, LIU, TIANTIAN, and KAVAN, LADISLAV. “Fast
simulation of deformable characters with articulated skeletons in
projective dynamics”. Proceedings of the 18th Annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 2019, 1–
10 4.

[LLK19b] LI, JING, LIU, TIANTIAN, and KAVAN, LADISLAV. “Fast
simulation of deformable characters with articulated skeletons in
projective dynamics”. Proceedings of the 18th Annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. SCA ’19.
Los Angeles, California: Association for Computing Machinery, 2019.
ISBN: 9781450366779. DOI: 10.1145/3309486.3340249. URL:
https://doi.org/10.1145/3309486.3340249 6.

[LLK20] LI, JING, LIU, TIANTIAN, and KAVAN, LADISLAV. “Soft artic-
ulated characters in projective dynamics”. IEEE Transactions on Visual-
ization and Computer Graphics 28.2 (2020), 1385–1396 4.

[MHHR07] MÜLLER, MATTHIAS, HEIDELBERGER, BRUNO, HENNIX,
MARCUS, and RATCLIFF, JOHN. “Position based dynamics”. Journal
of Visual Communication and Image Representation 18.2 (2007), 109–
118 7.

[NM93] NGO, J THOMAS and MARKS, JOE. “Spacetime constraints revis-
ited”. Proceedings of the 20th annual conference on Computer graphics
and interactive techniques. 1993, 343–350 3.

[PW99] POPOVIĆ, ZORAN and WITKIN, ANDREW. “Physically based
motion transformation”. Proceedings of the 26th annual conference on
Computer graphics and interactive techniques. 1999, 11–20 3.

[RGBC96] ROSE, CHARLES, GUENTER, BRIAN, BODENHEIMER,
BOBBY, and COHEN, MICHAEL F. “Efficient generation of motion
transitions using spacetime constraints”. Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques.
1996, 147–154 3.

[SHP04] SAFONOVA, ALLA, HODGINS, JESSICA K, and POLLARD,
NANCY S. “Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces”. ACM Transactions on Graphics
(ToG) 23.3 (2004), 514–521 3.

[SP05] SULEJMANPAŠIĆ, ADNAN and POPOVIĆ, JOVAN. “Adaptation of
performed ballistic motion”. ACM Transactions on Graphics (TOG) 24.1
(2005), 165–179 3.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1145/3309486.3340249
https://doi.org/10.1145/3309486.3340249

12 of 12 Y. Wu & N. Umetani / BlendSim: Simulation on Parametric Blendshapesusing Spacetime Projective Dynamics

[SVJ15] SACHT, LEONARDO, VOUGA, ETIENNE, and JACOBSON, ALEC.
“Nested cages”. ACM Transactions on Graphics (TOG) 34.6 (2015), 1–
14 9.

[SvTSH14] SCHULZ, CHRISTIAN, von TYCOWICZ, CHRISTOPH, SEI-
DEL, HANS-PETER, and HILDEBRANDT, KLAUS. “Animating de-
formable objects using sparse spacetime constraints”. ACM Transactions
on Graphics (TOG) 33.4 (2014), 1–10 2, 3.

[VSSH15] VON-TYCOWICZ, CHRISTOPH, SCHULZ, CHRISTIAN, SEI-
DEL, HANS-PETER, and HILDEBRANDT, KLAUS. “Real-time nonlin-
ear shape interpolation”. ACM Transactions on Graphics (TOG) 34.3
(2015), 1–10 4.

[WK88] WITKIN, ANDREW and KASS, MICHAEL. “Spacetime Con-
straints”. SIGGRAPH Comput. Graph. 22.4 (June 1988), 159–168. ISSN:
0097-8930. DOI: 10.1145/378456.378507. URL: https://
doi.org/10.1145/378456.378507 2, 3.

[WP09] WAMPLER, KEVIN and POPOVIĆ, ZORAN. “Optimal gait and
form for animal locomotion”. ACM Transactions on Graphics (TOG)
28.3 (2009), 1–8 3.

[WU23] WU, YUHAN and UMETANI, NOBUYUKI. “Two-Way Coupling
of Skinning Transformations and Position Based Dynamics”. Proceed-
ings of the ACM on Computer Graphics and Interactive Techniques 6.3
(2023), 1–18 4.

[ZBLJ20] ZHANG, JIAYI ERIS, BANG, SEUNGBAE, LEVIN, DAVID I.W.,
and JACOBSON, ALEC. “Complementary Dynamics”. ACM Transac-
tions on Graphics (2020) 4.

Appendix A:

First we define the derivative of position, velocity and acceleration
wrp. to time respectively. Suppose t ∈ [ti, ti+1] then

∂x(t)
∂Ti

= b1(θ)vi −b2(θ)vi+1, (13)

∂ẋ(t)
∂Ti

=− 1
T 2

i
B′

iqi +
1
Ti

(
b′1(θ)vi −b′2(θ)vi+1

)
, (14)

∂ẍ(t)
∂Ti

=− 2
T 3

i
B′′

i qi +
1

T 2
i

(
b′′1 (θ)vi −b′′2 (θ)vi+1

)
, (15)

∂
2x(t)
∂T 2

i
= 0 (16)

∂
2ẋ(t)
∂T 2

i
=

2
T 3

i
B′

iqi −
2

T 2
i

(
b′1(θ)vi −b′2(θ)vi+1

)
, (17)

∂
2ẍ(t)
∂T 2

i
=

6
T 4

i
B′′

i qi −
4

T 2
i

(
b′′1 (θ)vi −b′′2 (θ)vi+1

)
. (18)

Although it seems complicated, each derivative is computed by
interpolation of current vertex positions and velocities. Substitute
these derivatives into f res in (4), we obtain

∂f res(t)
∂Ti

= M ∂ẍ(t)
∂Ti

+D ∂ẋ(t)
∂Ti

− ∂f in

∂x
∂x(t)
∂Ti

, (19)

∂
2f res(t)
∂T2

i
= M ∂

2ẍ(t)
∂T 2

i
+D ∂

2ẋ(t)
∂T 2

i
− ∂f in

∂x
∂

2x(t)
∂T 2

i
. (20)

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1145/378456.378507
https://doi.org/10.1145/378456.378507
https://doi.org/10.1145/378456.378507

